Sains Malaysiana 53(11)(2024): 3771-3778
http://doi.org/10.17576/jsm-2024-5311-19
Derivation of a
Rotation Curve Model Based on Time of Events Theory and Its Application on
Samples of Several Spiral Galaxies
(Terbitan Model Lengkung Putaran Berdasarkan Teori Masa Peristiwa dan Aplikasinya pada Sampel Beberapa Galaksi Lingkaran)
JAZEEL H.
AZEEZ1,*, SADEEM ABBAS FADHIL1 & ZAMRI ZAINAL ABIDIN2
1Department of Physics, College of Sciences,
Al-Nahrain University, 10070, Baghdad, Iraq
2Department of Physics, College of Sciences, University of Malaya,
50603 Kuala Lumpur, Malaysia
Received: 21 July
2024/Accepted: 2 September 2024
Abstract
A new
model of rotation curves in spiral galaxies is derived and applied to several
spiral galaxies. This model is based on a new theory called the ‘time of
events’ theory, which was published elsewhere. The theory led to derive a multiscale model
that applies to the problem of rotation curves in the galaxies as a
non-adiabatic system. The equations of the derived multiscale model will be
generalized in the current work to apply to the gases inside the galaxy to
reach a general semi-empirical model that relates rotational velocity with the
galaxy radius. The derived equation showed an excellent agreement with
experimental results for five galaxies. The findings showed that the bulge
plays a limited role for the galaxies with large extensions like IC 2574 and
NGC 3198, where the dark matter in the halo region controls and determines the
shape of the diagram of the rotation curves in these galaxies. Furthermore, in
three bared galaxies NGC 1068, NGC 1097, and NGC 6503, the bulge has the most
major role in controlling the rotation dynamics in these galaxies.
Keywords: Dark matter;
rotation curve; spiral galaxies; time of events theory
Abstrak
Suatu model baharu lengkungan putaran galaksi berputar diperoleh dan diaplikasikan kepada beberapa galaksi berputar. Model ini adalah didasarkan pada teori baharu yang diperoleh daripada hasil terbitan artikel jurnal lain dan dikenali sebagai ‘masa kejadian’. Teori ini dapat menghasilkan model berbilang skala yang diaplikasikan kepada masalah lengkungan putaran galaksi sebagai sistem bukan adiabatik. Persamaan model berbilang skala terbitan akan digeneralisasikan di dalam kertas ini untuk digunakan pada gas di dalam galaksi untuk mencapai model separa empirik umum yang mengaitkan halaju putaran dengan jejari galaksi. Persamaan yang diterbitkan menunjukkan keserasian yang sangat baik dengan keputusan uji kaji untuk lima galaksi yang dipilih. Penemuan menunjukkan bahawa tonjolan pusat galaksi memainkan peranan terhad untuk galaksi yang mempunyai tambahan seperti IC 2574 dan NGC 3198 dengan jirim gelap di kawasan lingkaran mengawal dan menentukan bentuk rajah lengkung putaran dalam semua galaksi tersebut. Sebagai tambahan, dalam tiga galaksi berpalang NGC 1068, NGC 1097 dan NGC 6503, tonjolan pusat galaksi memainkan peranan paling utama dalam mengawal dinamik putaran semua galaksi tersebut.
Kata kunci: Galaksi lingkaran; lengkung putaran; perkara gelap; teori masa kejadian
REFERENCES
Azeez, J.H., Abidin,
Z.Z., Fadhil, S.A. & Hwang, C-Y. 2022. Analyzing interferometric CO (3-2) observations of NGC 4039. Sains Malaysiana 51(4): 1271-1282.
https://doi.org/10.17576/jsm-2022-5104-25
Azeez, J.H., Zghair,
A.A., Fadhil, S.A. & Zainal Abidin, Z. 2021.
Rotational velocity and dynamical mass for the nuclear disk of the ULIRG Arp
220. Journal of Physics: Conference Series 1829(1): 012004.
https://doi.org/10.1088/1742-6596/1829/1/012004.
Azeez, J.H., Abidin,
Z.Z., Ibrahim, Z.A. & Hwang, C-Y. 2015. Rotation curve and dynamical mass
in the inner region of M100 with ALMA. 2015 International Conference on
Space Science and Communication (IconSpace). pp.
329-334. https://doi.org/10.1109/IconSpace.2015.7283748
Baes, M. & Dejonghe,
H. 2004. A completely analytical family of dynamical models for spherical
galaxies and bulges with a central black hole. Monthly Notices of the Royal
Astronomical Society 351(1): 18-30.
https://doi.org/10.1111/j.1365-2966.2004.07773.x
Baes, M., Dejonghe,
H. & Buyle, P. 2005. The dynamical structure of
isotropic spherical galaxies with a central black hole. A&A 432(2):
411-422. https://doi.org/10.1051/0004-6361:20041907
Binney, J. & McMillan, P. 2011. Models
of our galaxy – II. Monthly Notices of the Royal Astronomical Society 413(3): 1889-1898. https://doi.org/10.1111/j.1365-2966.2011.18268.x
Del Popolo, A.
& Le Delliou, M. 2021. Review of solutions to the
cusp-core problem of the ΛCDM model. Galaxies.
https://doi.org/10.3390/galaxies9040123
Fadhil, S.A., Azeez, J.H. & Hassan,
M.A. 2021. Derivation of a new multiscale model: I. Derivation of the model for
the atomic, molecular and nano material scales. Indian
Journal of Physics 95(2): 209-217.
https://doi.org/10.1007/s12648-020-01710-w
Fadhil, S.A., Azeez, J.H. & Whahaeb, A.F. 2014. Solving the instantaneous response
paradox of entangled particles using the time of events theory. The European
Physical Journal Plus 129(2): 23.
https://doi.org/10.1140/epjp/i2014-14023-5
Freese, K. 2009. Review of observational
evidence for dark matter in the universe and in upcoming searches for dark
stars. EAS Publications Series 36: 113-126.
https://doi.org/10.1051/eas/0936016
Frenk, C.S. & White, S.D.M. 2012. Dark
matter and cosmic structure. Annalen Der Physik 524(9-10): 507-534.
https://doi.org/https://doi.org/10.1002/andp.201200212
Hernquist, L. 1990. An analytical model for
spherical galaxies and bulges. Astrophysical Journal 356: 359-364.
Karukes, E.V., Salucci,
P., Gentile, G., Karukes, E.V., Salucci,
P. & Gentile, G. 2015. The dark matter distribution in the spiral NGC 3198
out to 0.22 Rvir. A&A 578(June): A13.
https://doi.org/10.1051/0004-6361/201425339
Kauffmann, G., Huang, M-L., Moran, S. &
Heckman, T.M. 2015. A systematic study of the inner rotation curves of galaxies
observed as part of the GASS and COLD GASS surveys. Monthly Notices of the
Royal Astronomical Society 451(1): 878-887.
Kuzio de Naray, R.,
Arsenault, C.A., Spekkens, K., Sellwood,
J.A., McDonald, M., Simon, J.D. & Teuben, P.
2012. Searching for non-axisymmetries in NGC 6503: A
weak end-on bar. Monthly Notices of the Royal Astronomical Society 427(3): 2523-2536. https://doi.org/10.1111/j.1365-2966.2012.22126.x
Lilley, E.J., Evans, N.W. & Sanders,
J.L. 2018. The super-NFW Model: An analytic dynamical model for cold dark
matter haloes and elliptical galaxies. Monthly Notices of the Royal
Astronomical Society 476(2): 2086-2091.
https://doi.org/10.1093/mnras/sty295
Lin, L-H., Wang, H-H., Hsieh, P-Y., Taam, R.E., Yang, C-C. & Yen, D.C.C. 2013. Hydrodynamical
simulations of the barred spiral galaxy NGC 1097. The Astrophysical
Journal 771(1): 8. https://doi.org/10.1088/0004-637X/771/1/8
Mbelek, J.P. 2004. Modelling the rotational
curves of spiral galaxies with a scalar field. A&A 424(3): 761-764.
https://doi.org/10.1051/0004-6361:20040192
McGaugh, S. 2020. Predictions and outcomes for the
dynamics of rotating galaxies. Galaxies https://doi.org/10.3390/galaxies8020035
Navarro, J.F., Frenk,
C.S. & White, S.D.M. 1997. A universal density profile from hierarchical
clustering. The Astrophysical Journal 490(2): 493.
Oman, K.A., Navarro, J.F., Fattahi, A., Frenk, C.S., Sawala, T., White, S.D.M., Bower, R., Crain, R.A., Furlong,
M., Schaller, M., Schaye, J. & Theuns, T. 2015. The unexpected diversity of dwarf galaxy
rotation curves. Monthly Notices of the Royal Astronomical Society 452(4): 3650-3665. https://doi.org/10.1093/mnras/stv1504
Schartmann, M., Burkert, A., Krause, M., Camenzind, M., Meisenheimer, K.
& Davies, R.I. 2010. Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star
cluster. Monthly Notices of the Royal Astronomical Society 403(4):
1801-1811. https://doi.org/10.1111/j.1365-2966.2010.16250.x
Sofue, Y. 2017. Rotation and mass in the milky
way and spiral galaxies. Publications of the Astronomical Society of Japan 69(1): R1. https://doi.org/10.1093/pasj/psw103
Sofue, Y. 2013. Mass distribution and rotation
curve in the galaxy. In Planets, Stars and Stellar Systems, edited by
Oswalt, T.D. & Gilmore, G. Dordrecht: Springer Netherlands. pp. 985-1037.
https://doi.org/10.1007/978-94-007-5612-0_19
Sormani, M.C., Barnes, A.T., Sun, J., Stuber,
S.K., Schinnerer, E., Emsellem,
E., Leroy, A.K., Glover, S.C.O., Henshaw, J.D., Meidt,
S.E., Neumann, J., Querejeta, M., Williams, T.G., Bigiel, F., Eibensteiner, C., Fragkoudi, F., Levy, R.C., Grasha,
K., Klessen, R.S., Kruijssen,
J.M.D., Neumayer, N., Pinna, F., Rosolowsky,
E.W., Smith, R.J., Teng, Y.H., Tress, R.G. & Watkins, E.J. 2023. Fuelling
the nuclear ring of NGC 1097. Monthly Notices of the Royal Astronomical
Society 523(2): 2918-2927. https://doi.org/10.1093/mnras/stad1554
Su, Y., Nulsen,
P.E.J., Kraft, R.P., Forman, W.R., Jones, C., Irwin, J.A., Randall, S.W. & Churazov, E. 2017. Buoyant AGN bubbles in the
quasi-isothermal potential of NGC 1399. The Astrophysical Journal 847(2): 94. https://doi.org/10.3847/1538-4357/aa8954
Takatsuka, K. 2018. Adiabatic and nonadiabatic
dynamics in classical mechanics for coupled fast and slow modes: Sudden
transition caused by the fast mode against the slaving principle. Molecular
Physics 116(19-20): 2556-2570.
https://doi.org/10.1080/00268976.2018.1430389
Xu, Z. (Jay). 2023. Dark matter halo mass
functions and density profiles from mass and energy cascade. Scientific
Reports 13(1): 16531. https://doi.org/10.1038/s41598-023-42958-6
Zasov, A.V., Saburova,
A.S., Khoperskov, A.V. & Khoperskov,
S.A. 2017. Dark matter in galaxies. Physics-Uspekhi 60(1): 3. https://doi.org/10.3367/UFNe.2016.03.037751
*Corresponding author; email:
jazeelhussein@yahoo.com