Sains Malaysiana 53(11)(2024): 3771-3778

http://doi.org/10.17576/jsm-2024-5311-19

 

 

Derivation of a Rotation Curve Model Based on Time of Events Theory and Its Application on Samples of Several Spiral Galaxies

(Terbitan Model Lengkung Putaran Berdasarkan Teori Masa Peristiwa dan Aplikasinya pada Sampel Beberapa Galaksi Lingkaran)

 

JAZEEL H. AZEEZ1,*, SADEEM ABBAS FADHIL1 & ZAMRI ZAINAL ABIDIN2

 

1Department of Physics, College of Sciences, Al-Nahrain University, 10070, Baghdad, Iraq
2Department of Physics, College of Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

Received: 21 July 2024/Accepted: 2 September 2024

 

Abstract

A new model of rotation curves in spiral galaxies is derived and applied to several spiral galaxies. This model is based on a new theory called the ‘time of events’ theory, which was published elsewhere. The theory led to derive a multiscale model that applies to the problem of rotation curves in the galaxies as a non-adiabatic system. The equations of the derived multiscale model will be generalized in the current work to apply to the gases inside the galaxy to reach a general semi-empirical model that relates rotational velocity with the galaxy radius. The derived equation showed an excellent agreement with experimental results for five galaxies. The findings showed that the bulge plays a limited role for the galaxies with large extensions like IC 2574 and NGC 3198, where the dark matter in the halo region controls and determines the shape of the diagram of the rotation curves in these galaxies. Furthermore, in three bared galaxies NGC 1068, NGC 1097, and NGC 6503, the bulge has the most major role in controlling the rotation dynamics in these galaxies.

 

Keywords: Dark matter; rotation curve; spiral galaxies; time of events theory

 

Abstrak

Suatu model baharu lengkungan putaran galaksi berputar diperoleh dan diaplikasikan kepada beberapa galaksi berputar. Model ini adalah didasarkan pada teori baharu yang diperoleh daripada hasil terbitan artikel jurnal lain dan dikenali sebagai ‘masa kejadian’. Teori ini dapat menghasilkan model berbilang skala yang diaplikasikan kepada masalah lengkungan putaran galaksi sebagai sistem bukan adiabatik. Persamaan model berbilang skala terbitan akan digeneralisasikan di dalam kertas ini untuk digunakan pada gas di dalam galaksi untuk mencapai model separa empirik umum yang mengaitkan halaju putaran dengan jejari galaksi. Persamaan yang diterbitkan menunjukkan keserasian yang sangat baik dengan keputusan uji kaji untuk lima galaksi yang dipilih. Penemuan menunjukkan bahawa tonjolan pusat galaksi memainkan peranan terhad untuk galaksi yang mempunyai tambahan seperti IC 2574 dan NGC 3198 dengan jirim gelap di kawasan lingkaran mengawal dan menentukan bentuk rajah lengkung putaran dalam semua galaksi tersebut. Sebagai tambahan, dalam tiga galaksi berpalang NGC 1068, NGC 1097 dan NGC 6503, tonjolan pusat galaksi memainkan peranan paling utama dalam mengawal dinamik putaran semua galaksi tersebut.

 

Kata kunci: Galaksi lingkaran; lengkung putaran; perkara gelap; teori masa kejadian

 

REFERENCES

Azeez, J.H., Abidin, Z.Z., Fadhil, S.A. & Hwang, C-Y. 2022. Analyzing interferometric CO (3-2) observations of NGC 4039. Sains Malaysiana 51(4): 1271-1282. https://doi.org/10.17576/jsm-2022-5104-25

Azeez, J.H., Zghair, A.A., Fadhil, S.A. & Zainal Abidin, Z. 2021. Rotational velocity and dynamical mass for the nuclear disk of the ULIRG Arp 220. Journal of Physics: Conference Series 1829(1): 012004. https://doi.org/10.1088/1742-6596/1829/1/012004.

Azeez, J.H., Abidin, Z.Z., Ibrahim, Z.A. & Hwang, C-Y. 2015. Rotation curve and dynamical mass in the inner region of M100 with ALMA. 2015 International Conference on Space Science and Communication (IconSpace). pp. 329-334. https://doi.org/10.1109/IconSpace.2015.7283748

Baes, M. & Dejonghe, H. 2004. A completely analytical family of dynamical models for spherical galaxies and bulges with a central black hole. Monthly Notices of the Royal Astronomical Society 351(1): 18-30. https://doi.org/10.1111/j.1365-2966.2004.07773.x

Baes, M., Dejonghe, H. & Buyle, P. 2005. The dynamical structure of isotropic spherical galaxies with a central black hole. A&A 432(2): 411-422. https://doi.org/10.1051/0004-6361:20041907

Binney, J. & McMillan, P. 2011. Models of our galaxy – II. Monthly Notices of the Royal Astronomical Society 413(3): 1889-1898. https://doi.org/10.1111/j.1365-2966.2011.18268.x

Del Popolo, A. & Le Delliou, M. 2021. Review of solutions to the cusp-core problem of the ΛCDM model. Galaxies. https://doi.org/10.3390/galaxies9040123

Fadhil, S.A., Azeez, J.H. & Hassan, M.A. 2021. Derivation of a new multiscale model: I. Derivation of the model for the atomic, molecular and nano material scales. Indian Journal of Physics 95(2): 209-217. https://doi.org/10.1007/s12648-020-01710-w

Fadhil, S.A., Azeez, J.H. & Whahaeb, A.F. 2014. Solving the instantaneous response paradox of entangled particles using the time of events theory. The European Physical Journal Plus 129(2): 23. https://doi.org/10.1140/epjp/i2014-14023-5

Freese, K. 2009. Review of observational evidence for dark matter in the universe and in upcoming searches for dark stars. EAS Publications Series 36: 113-126. https://doi.org/10.1051/eas/0936016

Frenk, C.S. & White, S.D.M. 2012. Dark matter and cosmic structure. Annalen Der Physik 524(9-10): 507-534. https://doi.org/https://doi.org/10.1002/andp.201200212

Hernquist, L. 1990. An analytical model for spherical galaxies and bulges. Astrophysical Journal 356: 359-364.

Karukes, E.V., Salucci, P., Gentile, G., Karukes, E.V., Salucci, P. & Gentile, G. 2015. The dark matter distribution in the spiral NGC 3198 out to 0.22 Rvir. A&A 578(June): A13. https://doi.org/10.1051/0004-6361/201425339

Kauffmann, G., Huang, M-L., Moran, S. & Heckman, T.M. 2015. A systematic study of the inner rotation curves of galaxies observed as part of the GASS and COLD GASS surveys. Monthly Notices of the Royal Astronomical Society 451(1): 878-887.

Kuzio de Naray, R., Arsenault, C.A., Spekkens, K., Sellwood, J.A., McDonald, M., Simon, J.D. & Teuben, P. 2012. Searching for non-axisymmetries in NGC 6503: A weak end-on bar. Monthly Notices of the Royal Astronomical Society 427(3): 2523-2536. https://doi.org/10.1111/j.1365-2966.2012.22126.x

Lilley, E.J., Evans, N.W. & Sanders, J.L. 2018. The super-NFW Model: An analytic dynamical model for cold dark matter haloes and elliptical galaxies. Monthly Notices of the Royal Astronomical Society 476(2): 2086-2091. https://doi.org/10.1093/mnras/sty295

Lin, L-H., Wang, H-H., Hsieh, P-Y., Taam, R.E., Yang, C-C. & Yen, D.C.C. 2013. Hydrodynamical simulations of the barred spiral galaxy NGC 1097. The Astrophysical Journal 771(1): 8. https://doi.org/10.1088/0004-637X/771/1/8

Mbelek, J.P. 2004. Modelling the rotational curves of spiral galaxies with a scalar field. A&A 424(3): 761-764. https://doi.org/10.1051/0004-6361:20040192

McGaugh, S. 2020. Predictions and outcomes for the dynamics of rotating galaxies. Galaxies https://doi.org/10.3390/galaxies8020035

Navarro, J.F., Frenk, C.S. & White, S.D.M. 1997. A universal density profile from hierarchical clustering. The Astrophysical Journal 490(2): 493.

Oman, K.A., Navarro, J.F., Fattahi, A., Frenk, C.S., Sawala, T., White, S.D.M., Bower, R., Crain, R.A., Furlong, M., Schaller, M., Schaye, J. & Theuns, T. 2015. The unexpected diversity of dwarf galaxy rotation curves. Monthly Notices of the Royal Astronomical Society 452(4): 3650-3665. https://doi.org/10.1093/mnras/stv1504

Schartmann, M., Burkert, A., Krause, M., Camenzind, M., Meisenheimer, K. & Davies, R.I. 2010. Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star cluster. Monthly Notices of the Royal Astronomical Society 403(4): 1801-1811. https://doi.org/10.1111/j.1365-2966.2010.16250.x

Sofue, Y. 2017. Rotation and mass in the milky way and spiral galaxies. Publications of the Astronomical Society of Japan 69(1): R1. https://doi.org/10.1093/pasj/psw103

Sofue, Y. 2013. Mass distribution and rotation curve in the galaxy. In Planets, Stars and Stellar Systems, edited by Oswalt, T.D. & Gilmore, G. Dordrecht: Springer Netherlands. pp. 985-1037. https://doi.org/10.1007/978-94-007-5612-0_19

Sormani, M.C., Barnes, A.T., Sun, J., Stuber, S.K., Schinnerer, E., Emsellem, E., Leroy, A.K., Glover, S.C.O., Henshaw, J.D., Meidt, S.E., Neumann, J., Querejeta, M., Williams, T.G., Bigiel, F., Eibensteiner, C., Fragkoudi, F., Levy, R.C., Grasha, K., Klessen, R.S., Kruijssen, J.M.D., Neumayer, N., Pinna, F., Rosolowsky, E.W., Smith, R.J., Teng, Y.H., Tress, R.G. & Watkins, E.J. 2023. Fuelling the nuclear ring of NGC 1097. Monthly Notices of the Royal Astronomical Society 523(2): 2918-2927. https://doi.org/10.1093/mnras/stad1554

Su, Y., Nulsen, P.E.J., Kraft, R.P., Forman, W.R., Jones, C., Irwin, J.A., Randall, S.W. & Churazov, E. 2017. Buoyant AGN bubbles in the quasi-isothermal potential of NGC 1399. The Astrophysical Journal 847(2): 94. https://doi.org/10.3847/1538-4357/aa8954

Takatsuka, K. 2018. Adiabatic and nonadiabatic dynamics in classical mechanics for coupled fast and slow modes: Sudden transition caused by the fast mode against the slaving principle. Molecular Physics 116(19-20): 2556-2570. https://doi.org/10.1080/00268976.2018.1430389

Xu, Z. (Jay). 2023. Dark matter halo mass functions and density profiles from mass and energy cascade. Scientific Reports 13(1): 16531. https://doi.org/10.1038/s41598-023-42958-6

Zasov, A.V., Saburova, A.S., Khoperskov, A.V. & Khoperskov, S.A. 2017. Dark matter in galaxies. Physics-Uspekhi 60(1): 3. https://doi.org/10.3367/UFNe.2016.03.037751

 

*Corresponding author; email: jazeelhussein@yahoo.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next